On Ray's theorem for weak firmly nonexpansive mappings in Hilbert Spaces
نویسندگان
چکیده
منابع مشابه
On Firmly Nonexpansive Mappings
It is shown that any A-firmly, 0 < A < 1 , nonexpansive mapping T: C —> C has a fixed point in C whenever C is a finite union of nonempty, bounded, closed convex subsets of a uniformly convex Banach space. Let C be a nonempty subset of a Banach space X, and let X £ (0, 1). Then a mapping T: C —> X is said to be X-firmly nonexpansive if (1) \\Tx Ty\\ < ||(1 X)(x y)+X(Tx Ty)\\ for all x, y £ C. I...
متن کاملRay’s Theorem for Firmly Nonexpansive-Like Mappings and Equilibrium Problems in Banach Spaces
Let C be a subset of a Banach space E. A mapping T : C → E is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. In 1965, it was proved independently by Browder 1 , Göhde 2 , and Kirk 3 that if C is a bounded closed convex subset of a Hilbert space and T : C → C is nonexpansive, then T has a fixed point. Combining the results above, Ray 4 obtained the following interesting result see 5 for a...
متن کاملViscosity Approximation Methods for Nonexpansive Nonself-Mappings in Hilbert Spaces
Viscosity approximation methods for nonexpansive nonself-mappings are studied. Let C be a nonempty closed convex subset of Hilbert space H , P a metric projection of H onto C and let T be a nonexpansive nonself-mapping from C into H . For a contraction f on C and {tn} ⊆ (0,1), let xn be the unique fixed point of the contraction x → tn f (x) + (1− tn)(1/n) ∑n j=1(PT) x. Consider also the iterati...
متن کاملThe Asymptotic Behavior of Firmly Nonexpansive Mappings
We present several new results on the asymptotic behavior of firmly nonexpansive mappings in Banach spaces and in the Hubert ball. Let D be a subset of a (real) Banach space X. Recall that a mapping T: D -» X is said to be firmly nonexpansive [2, 4] if for each x and y in D, the convex function /: [0,1] -> [0, oo) defined by f{s) = \(\-s)x + sTx-((l-s)y + sTy) \ is nonincreasing. Note that T is...
متن کاملApproximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces
This paper introduces an implicit scheme for a continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup. The main result is to prove the strong convergence of the proposed implicit scheme to the unique solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOURNAL OF ADVANCES IN MATHEMATICS
سال: 2016
ISSN: 2347-1921
DOI: 10.24297/jam.v12i1.610